Electrophysiological evidence for functionally distinct neuronal populations in the human substantia nigra
نویسندگان
چکیده
The human substantia nigra (SN) is thought to consist of two functionally distinct neuronal populations-dopaminergic (DA) neurons in the pars compacta subregion and GABA-ergic neurons in the pars reticulata subregion. However, a functional dissociation between these neuronal populations has not previously been demonstrated in the awake human. Here we obtained microelectrode recordings from the SN of patients undergoing deep brain stimulation (DBS) surgery for Parkinson's disease as they performed a two-alternative reinforcement learning task. Following positive feedback presentation, we found that putative DA and GABA neurons demonstrated distinct temporal dynamics. DA neurons demonstrated phasic increases in activity (250-500 ms post-feedback) whereas putative GABA neurons demonstrated more delayed and sustained increases in activity (500-1000 ms post-feedback). These results provide the first electrophysiological evidence for a functional dissociation between DA and GABA neurons in the human SN. We discuss possible functions for these neuronal responses based on previous findings in human and animal studies.
منابع مشابه
Morphological and physiological properties of parvalbumin- and calretinin-containing gamma-aminobutyric acidergic neurons in the substantia nigra.
Evidence for the existence of different populations of gamma-aminobutyric acid (GABA)-ergic neurons in the substantia nigra comes partially from anatomical studies, which have shown there to be little if any overlap between the calcium-binding proteins parvalbumin and calretinin in individual neurons, suggesting that these may represent neuronal subtypes with distinct electrophysiological and/o...
متن کاملCinnamaldehyde attenuates dopaminergic neuronal loss in substantia nigra and induces midbrain catalase activity in a mouse model of Parkinson’s disease
Background and Objective: Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease that affects 3% of the population. PD involves a progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) and subsequent loss of dopamine. Dopamine depletion leads to movement dysfunction and is accompanied with tremor, rigid muscle...
متن کاملTransgenic mouse lines subdivide external segment of the globus pallidus (GPe) neurons and reveal distinct GPe output pathways.
Cell-type diversity in the brain enables the assembly of complex neural circuits, whose organization and patterns of activity give rise to brain function. However, the identification of distinct neuronal populations within a given brain region is often complicated by a lack of objective criteria to distinguish one neuronal population from another. In the external segment of the globus pallidus ...
متن کاملElectrophysiological and metabolic evidence that high-frequency stimulation of the subthalamic nucleus bridles neuronal activity in the subthalamic nucleus and the substantia nigra reticulata.
High-frequency stimulation (HFS) of the subthalamic nucleus (STN) has been shown to produce a dramatic alleviation of motor symptoms in patients with advanced Parkinson's disease. Its functional mechanism, however, remains obscure. We used extracellular recording and in situ cytochrome oxidase (CoI) mRNA hybridization to investigate the effects of HFS of the STN on neuronal activity of the STN ...
متن کاملThe effect of simvastatin in prevention of histological changes of substantia nigra and behavioral abnormalities in an experimental model of Parkinson’s disease in rat
Background and Objective: Parkinson’s disease (PD) is a rather common neurological disorder in elders that is due to degeneration of dopaminergic neurons within mesencephalic substantia nigra pars compacta. With regard to protective and antioxidant effect of simvastatin, this study was conducted to evaluate its neuroprotective effect in an experimental model of PD. Materials and Methods: In thi...
متن کامل